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Abstract—Numerous style transfer methods which produce
artistic styles of portraits have been proposed to date. However,
the inverse problem of converting the stylized portraits back
into realistic faces is yet to be investigated thoroughly. Reverting
an artistic portrait to its original photo-realistic face image has
potential to facilitate human perception and identity analysis.
In this paper, we propose a novel Face Destylization Neural
Network (FDNN) to restore the latent photo-realistic faces from
the stylized ones. We develop a Style Removal Network composed
of convolutional, fully-connected and deconvolutional layers. The
convolutional layers are designed to extract facial components
from stylized face images. Consecutively, the fully-connected
layer transfers the extracted feature maps of stylized images
into the corresponding feature maps of real faces while the
deconvolutional layers are used to generate real faces from the
transferred feature maps. To enforce the destylized faces to be
similar to authentic face images, we employ a discriminative
network, which consists of convolutional and fully connected
layers. We demonstrate the effectiveness of our network by
conducting experiments on an extensive set of synthetic images.
Furthermore, we illustrate our network can recover faces from
stylized portraits and real paintings for which the stylized data
was unavailable during the training phase.

I. INTRODUCTION

Applying artistic styles to existing photographs has attracted
much attention in both academia and industry with several
interesting applications. The inverse problem of reverting an
artistic portrait back to its photo-realistic version is investi-
gated in this paper. Revealing the latent real faces can provide
essential information for human perception, computer analysis
and photo-realistic multimedia content editing. Since facial
details and expressions in stylized portraits often undergo
severe distortions and become contaminated with artifacts such
as profile edges and color changes e.g., as in Fig. 1(a) and
Fig. 1(e), recovering a photo-realistic image of face from its
stylized version is very challenging.

The seminal work of [1] stylizes the content of an arbitrary
image according to a given reference artwork and achieves ap-
pealing style transfer results, hovewer, its iterative optimization
procedure is computationally costly. Several methods based
on feed-forward neural networks [2]–[9] accelerate the style
transfer for specific styles.

For our inverse problem, the above style transfer methods
fail to recover authentic face images as shown in Fig. 1(f)
and Fig. 1(g). These approaches typically use Gram matrices
to capture style-related contents. Since Gram matrices are
designed to measure the correlations between feature maps
of a style image and a target face, the spatial structure of
an output image is not guaranteed to be similar to the target
face. Therefore, existing style transfer methods which rely on
Gram matrices are not sufficient for restoring photo-realistic
portraits.

(a) Seen input (b) Gatys [1] (c) Using [4] (d) Our result

(e) Unseen in. (f) Gatys [1] (g) Using [4] (h) Our result

(i) Original

Fig. 1. Comparison to the state-of-art methods. (a) and (e) 128×128 stylized
face images in Candy style (which is seen and used for training) and in Starry
Night style (which is unseen style), respectively. (b, f) Results obtained by
applying [1] for the given stylized faces. (c, g) Results obtained by applying
[4]. (d, h) Our destylization results. (i) 128 × 128 ground-truth face image
(used for evaluation purposes; not available to the algorithm for training).

To capture local statistics of a style image, some approaches
use a so-called patch-based Generative Adversarial Network
(GAN) [10], [11]. However, patch-based GANs do not take the
global structure of faces into account thus a direct application
of patch-GAN may not produce satisfactory results. We will
show later that patch-based methods [10], [11] fail to attain
consistency of face colors. For the inverse problem, the patch-
based GAN methods result in even bigger inconsistencies.

We note that the state-of-the-art style transfer methods [2],
[4], [10] do not fully take into consideration how to extract
facial features from different stylized images and then recover
realistic images of faces. Our goal is to reveal the latent real
face images from multiple style portraits (seen styles) and
achieve destylization even when the styles are not available
in the training dataset (unseen styles).

To this end, we propose a novel destylization network
that automatically maps the stylized faces to photo-realistic
ones in an end-to-end fashion. Our network is composed
of two components: a generative part, named Style Removal
Network (SRN), and a discriminative part. SRN constitutes
convolutional, fully-connected and deconvolutional layers. The
convolutional layers are exploited to extract facial components
from stylized face images. As we aim to generate realistic
face images, a fully-connected layer is developed to map the
extracted feature maps of stylized faces to the feature maps of
real faces. Then the mapped feature maps are projected to the
image domain, thus forming face images. The discriminative
network enforces the latent space of SRN to produce realistic
images of faces, in the manner similar to [12]–[14]. We train
the entire network on a large-scale dataset of stylized and
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real face pairs. Our proposed framework can restore important
facial details and attributes thanks to the style removal and
discriminative subnetworks.

Furthermore, we observe that the filters of Convolutional
Neural Network (CNN) learned during training (seen styles)
are able to extract features from images containing unseen
styles. Thus, the facial information of stylized portraits can be
extracted and used to represent features of real faces. More-
over, our network can also restore the images of faces given
an unseen style. In the experimental section, we demonstrate
that our network is able to recover realistic faces from both
seen and unseen styles e.g., synthesized and original portraits
and paintings.

Below, we summarize our main contributions:
• We propose FDNN which is able to generate photo-

realistic faces from stylized ones. The results resemble
accurately to the ground-truth images of faces in terms
of facial properties e.g., facial profiles and expressions. To
the best of our knowledge, our method is the first attempt
to provide a unified framework for face destylization
which can remove both seen and unseen styles (observed
cf. unobserved styles during training).

• We develop a style removal sub-network to extract fea-
tures from stylized input images of faces, then map these
style features to real facial features and re-project them to
the image domain for the purpose of generating authentic
looking faces.

• We provide a dataset of pairs of the stylized and real
images of faces used in our experiments to stimulate
further research in destylization.

II. RELATED WORK

We briefly review the deep generative image models, deep
style transfer, and image translation approaches.

A. Deep Generative Image Models

Recently, several frameworks have been proposed for im-
age generation, such as variational auto-encoders [15], auto-
regressive models [16], and GANs [12]. Among these mod-
els, GANs generate impressive results because they employ
adversarial losses that force the generated images to be indis-
tinguishable from their real counterparts. In order to improve
the stability of the training procedure of GANs, various
methods have been proposed [11], [13], [17]–[20]. GANs are
also employed by the style transfer [10] and cross-domain
image generation [21]–[25] approaches. Li and Wand [10]
train a Markovian GAN for image style transfer such that a
discriminative training is applied on Markovian neural patches
to capture local style statistics. However, patch-based methods
may fail to capture the global structure of objects.

B. Deep Style Transfer

Style transfer methods transfer the style of a specific artwork
into a given photograph. They can be divided into two cate-
gories: image optimization-based and feed forward methods.

The optimization-based method [1] transfers the style by
updating pixels of the image iteratively. It minimizes the
distance between Gram matrices generated from feature maps
of the style and synthesized image with respect to input noise.
The approach [26] initializes the optimization algorithm with a
content image instead of noise. Li and Wand [27] use Markov
Random Field (MRF) in the deep feature space to enforce
local patterns. The work [28] employs linear models to transfer
styles and to preserve colors by matching color histograms.
Gatys et al. [29] detect and control spatial, color and scale
factors during the stylization process. Moreover, [30] proposes
a multi-modal CNN to perform stylization hierarchically with
multiple losses formed across multiple scales. In [31], the
loss function is improved by imposing a histogram-based
loss. The above optimization-based methods require a time-
consuming iterative optimization process, which limits their
practical application.

In contrast, feed-forward approaches replace the original
on-line iterative optimization procedure by off-line training
to produce stylized images through a single forward pass [2],
[4], [10]. Johonson et al. [4] train the generative network by
perceptual loss functions. The architecture of their generator
network follows work [32]. However, they additionally use
residual blocks and replace pooling layers by so-called frac-
tionally strided convolutions. In a concurrent work, [2] use
a multi-resolution architecture for their generator network. Li
and Wand [10] pre-compute a Markovian GAN which captures
the feature statistics of patches. To achieve faster convergence,
Ulyanov et al. [3], [33] replace batch with instance normaliza-
tion in the generator. These feed-forward approaches [2]–[4],
[10] are three orders of magnitude faster than optimization-
based style transfer methods. However, these networks only
transfer images according to a predefined style and thus
they need to be re-trained for every new style. Some recent
approaches improve the style transfer from a single style to
multiple styles [5], [7]. Dumoulin et al. [5] propose to train a
style transfer network for multiple styles by the use of condi-
tional instance normalization. Given feature activations of the
content and style images, [7] replaces the content features with
the closest-matching style features patch-by-patch. A recent
summary of state-of-the-art stylization methods can be found
in [34].

C. Image Transformation

Mapping images from one domain to another has a wide
range of applications. The idea of image transformation comes
from so-called image analogies [35] which focus on the non-
parametric patch-based texture synthesis from a single input-
output training image pair. Methods [11], [13], [14], [19],
[32], [36], [37] employ neural networks to learn a parametric
translating function from a large dataset of input-output pairs,
such as super-resolution and colorization. Isola et al. [11]
propose the pix2pix framework to learn a mapping from
input to output by a conditional GAN. Similar ideas have
been applied to generating photographs from sketches [36],
semantic layout and scene attributes [37].
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Moreover, [11] also uses a convolutional patchGAN clas-
sifier for its discriminator network. The above patch-based
method does not take the global structure of faces into account.
Furthermore, their network employs the architecture ”Unet” to
transfer the source to the target domain and utilizes low-level
features in the generative part that can result in distorted facial
images. In contrast, our approach takes into account the global
structure of faces and learns how to extract usuful features for
face destylization.

III. METHOD

Our FDNN network has two components: (i) a Style Re-
moval Network (SRN), which transforms stylized faces to the
photo-realistic ones, and (ii) a discriminative network, which
enforces the generated faces by SRN to be indistinguishable
from the real faces. Figure 2 illustrates the overall architecture
of our proposed network.

A. Style Removal Network

In Fig. 2, our SRN is enclosed by green frame. SRN
aims at removing various styles of portraits and generating
realistic faces. Our SRN comprizes convolutional layers fol-
lowed by batch normalization layers, a fully connected layer
and deconvolutional layers followed by batch normalization
layers. The convolutional layers are employed to extract facial
features from stylized face images. Then, we incorporate a
fully-connected layer to transfer the extracted feature maps of
stylized images into the feature maps of real faces. In order to
synthesize images of real faces, deconvolutional layers project
these transferred feature maps to the image domain.

In order to train SRN, we use stylized portraits as inputs and
their corresponding ground-truth images of real faces as de-
sired supervising output signals. Since a dataset of portrait/real
face pairs is not readily available, we opt to generate a large
number of stylized faces in numerous styles from real face
images. Figure 3(c) and Fig. 3(f) illustrate the effectiveness
of SRN.

B. Discriminative Network

Using only Euclidean distance, i.e. `2 loss, between the
destylized faces and the corresponding ground-truth real ones
tends to generate over-smoothed results as shown in Fig. 3(c)
and Fig. 3(f), and this phenomenon is also mentioned in [14].
Therefore, a class-specific discriminative objective is also
incorporated into our SRN, aiming to enforce the destylized
face images to lie on the same latent space of the authentic
face images.

As shown in the red frame of Fig. 2, the discriminative
network is constructed by convolutional layers and fully con-
nected layers. It is employed to determine whether an image is
sampled from real face images or the destylized ones. With the
help of the discriminative loss, also known as adversarial loss,
we can generate destylized faces more similar to real ones.
In doing so, the adversarial loss is back-propagated to update
the parameters of SRN. Figure 3(d) and Fig. 3(g) illustrate the
impact of the adversarial loss on the final results.

C. Training Details

Our FDNN is trained in an end-to-end manner. We use
Stylized Face (SF) and Real Face (RF) ground-truth image
pairs (si, ri) as our training dataset, where ri represents the
real face images aligned by eyes only, and si is a synthesized
SF image from ri. For each real face ri, we generate eight
different SFs i.e., Edvard Munch’s Scream, Candy, Feathers,
Starry Night by Van Gogh, la Muse by Pablo Picasso, Wassily
Kandinsky’s Composition VII, Mosaic and Francis Picabia’s
Udnie, and obtain SF/RF training pairs. The stylized faces of
Scream, Candy and Feathers are used in the training stage. As
detailed in Sec. IV, we find that these distinct portraits provide
a sufficient training data for our needs.

Our training strategy enforces the generated face r̂i to
be similar to its corresponding ground-truth ri. Therefore,
we employ a pixel-wise `2 loss between r̂i and ri, and we
minimize the objective Q(T ) of SRN as follows:

min
T

Q(T )=E(r̂i,ri)∼p(r̂,r)‖r̂i − ri‖
2
F

=E(si,ri)∼p(s,r)‖GT (si)− ri‖2F ,
(1)

where T indicates the parameters of SRN generator G, p(s, r)
represents the joint distribution of the SF and RF images in
the training dataset and p(r̂, r) represents the joint distribution
of destylized and the ground-truth faces.

To achieve high-quality results, we force SRN to fool
the discriminative supervising network that employs a binary
classifier which task is to distinguish whether incoming image
samples contain real or generated faces. Similar to the idea
of [12], [32], [38], our goal is to make the discriminative
network fail to distinguish generated faces from real ones.
Hereby, we maximize the adversarial loss of the discriminative
network F (L) as follows:

max
L

F (L)=E [logDL(ri) + log(1−DL(r̂i))]

=Eri∼p(r)[logDL(ri)]+Er̂i∼p(r̂))[log(1−DL(r̂i))],
(2)

where L represents the parameters of the discriminative net-
work D, p(r) and p(r̂) indicate the distributions corresponding
to the real and the generated faces, respectively, and DL(ri)
and DL(r̂i) are the outputs of D. Since the loss F is back-
propagated to update not only the parameters L but also T ,
we also minimize the objective function Qf (T ) of SRN:

min
T

Qf (T )=E(si,ri)∼p(s,r)‖GT (si)− ri‖2F
+λEsi∼p(s))[log(1−DL(GT (si)))],

(3)

where scalar λ is a trade-off between supervising the generator
by the ground-truth data vs. the discriminator supervision,
respectively.

Since each layer in our FDNN is differentiable, we employ
the Root Mean Square Propagation (RMSprop) [39] to update
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Fig. 2. Face destylization neural network consists of two parts: a generative network (green frame) and a discriminative network (red frame).

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Contribution of each component in FDNN. (a) Ground-truth real face images. (b) Input portrait of Feathers from training styles and (e) input portrait
of la Muse from unseen styles (from test dataset; not available to the algorithm for training). (c, f) Destylization results without adversarial loss. (d, g) Our
final results.

T and L. In order to maximize the adversarial loss F , the
stochastic gradient ascent is used to update L:

∆i+1 = β∆i + (1− β)(
∂F

∂L
)2,

Li+1 = Li + α
∂F

∂L
1√

∆i+1 + ε
,

(4)

where α and β represent the learning and the decay rate
respectively, i is the iteration index, ∆ is an auxiliary variable,
and ε is set to 10−8 to avoid division by zero. For SRN, both
losses Q and F are used to update T by the stochastic gradient
descent:

∆i+1 = β∆i + (1− β)(
∂Qf

∂T
)2,

T i+1 = T i − α(
∂Qf

∂T
)

1√
∆i+1 + ε

,
(5)

We set λ = 0.01 to limit supervision of the generator by
the discriminator and allow appearance-based learning from
the ground-truth image pairs. As the iterations progress, the

output faces will resemble the real faces more. Therefore, we
gradually reduce the impact of the discriminative network by
decreasing λ,

λn = max{λ · 0.995n, λ/2}, (6)

where n is the index of the epochs. Eqn. 6 not only increases
the impact of the appearance similarity term but also preserves
the class-specific discriminative information in the training
phase.

D. Implementation Details

Similar to [12], [32], we employ batch normalization after
the convolutional and deconvolutional layers of SRN except
for the last deconvolutional layers. We also use leaky rectified
linear units (leakyReLU) with a negative slope 0.2 as non-
linear activation functions. For training, the learning rate α is
set to 0.001 and multiplied by 0.99 after each epoch, and the
decay rate is set to 0.01. The discriminative network is only
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 4. Illustration of the synthesized dataset. (a) Original real face image.
(b)-(d) The synthesized stylized faces of (a) form Candy, Feathers and Scream
which have been used for training our network. (e)-(i) The synthesized stylized
faces of (a) form Composition VII, Mosaic, la Muse, Udnie and Starry styles
which have not been used for training.

employed in the training phase. In the testing phase, we feed a
stylized face image into the SRN to obtain its realistic version.

IV. SYNTHESIZED DATASET

Training of a deep neural network requires a large number
of samples to prevent models from overfitting to the training
data. The publicly available large-scale face datasets [40], [41]
only provide faces in the wild but not pairs of real images of
faces and their stylizations. Therefore, we opt to generate a
large number of stylized faces from the corresponding real
face images in eight distinct styles: Starry Night, la Muse,
Composition VII, Scream, Candy, Feathers, Mosaic and Udnie.
To generate such a dataset, there are a number of alternative
feed-forward approaches available [2]–[4]. We choose the
recent feed-forward style transfer model [4].

We firstly select at random 10K images of cropped real
faces (within ±30◦ orientation) from the CelebA [41] dataset
for training and 1K images for testing, and then resize them
to 128×128 pixels. We use 10K training images as our real
ground-truth faces ri. To generate three different portraits of
each face, we retrain the style transfer model [4] for Scream,
Candy and Feathers styles separately. Finally, we obtain 30K
SF/RF pairs for training our network. We also use 1K test real
faces to generate 8K SF/RF face pairs from eight different
styles (each test face corresponds to eight distinct styles) for
testing our network. Figure 4 shows the stylized samples that
are generated from a single real image containing a face
(Fig. 4(a)).

V. EXPERIMENTS

We compare our method qualitatively and quantitatively
against four different state-of-the-art methods. As explained
in Sec. IV, we gather 30K SF/RF face pairs from three styles
as a training dataset and 8K SF/RF pairs faces generated from
different eight styles for testing. In all the cases, the ground-
truth real faces and the corresponding stylized faces do not
overlap in the training and testing datasets. Our method is
feed-forward and works real-time.

A. Qualitative Evaluation

Comparison to the state of the art. Firstly, we note that
the test stylized face images are not used by us during the
training of our model. The resolution of stylized and destylized
output faces in this study is 128×128 pixels. We compare our
approach against four various approaches as detailed below.

We compare our work against [1] which is an image-
optimization based style transfer method that has not any
training stage. To generate real faces, this network strives
to preserve the contents of a portrait and the style of the
corresponding photo-realistic face. The network fails to pro-
duce appealing results as illustrated in Fig. 5(c) and Fig. 6(c).
Because of how the Gram matrix is constructed, this method
only captures the correlation between feature maps of style
and synthesized images. Thus, the spatial arrangement at the
pixel level is not preserved.

We also use a feed-forward approach [4] for destylization.
Due to Gram matrix, this method also produces distorted facial
details. As shown in the first row of Fig. 5(d), the edges of
the face have been blurred and the color of the face is not
consistent. From the first row of Fig. 6(d), one can see that
the style overlapping with the eyes has not been fully removed.
Thus, their network fails to restore authentic looking eyes.

Li and Wand [10] propose a patch-based style transfer
method, known as Markovian GAN. We use their network
for destylization and apply their standard protocols. As such a
method is trained with stylized face patches, it cannot capture
the global structure of facial images. As seen in Fig. 5(e)
and Fig. 6(e), the facial color consistency cannot be preserved
either. In contrast, our method produces highly-consistent
facial colors and captures the global structure of faces well.

Isola et al. [11] present a general image-to-image translation
method, known as pix2pix. It employs the architecture ”Unet”
for the generator network and uses a convolutional patch based
neural network as the discriminator network. The discriminator
network is trained to classify whether an image patch repre-
sents a sample of real or generated face. In addition, the low-
level features from the bottom layers of Unet also participate
in generating images of faces. These low-level features corrupt
the destylized images and are the cause of poor removal of
styles in the images e.g., for unseen styles. As shown in
Fig. 5(f) and Fig. 6(f), while pix2pix can produce acceptable
results for seen styles, it fails to remove styles effectively from
unseen style. As shown in the fourth row of Fig. 6(f), obvious
artifacts appear in the generated face of an unseen style.

Our destylized results demonstrate higher fidelity w.r.t. the
real faces, better consistency in colors and even preserve the
identity of the subject, as shown in Fig. 5(g) and Fig. 6(g).

B. Quantitative Evaluation

Face Reconstruction. In Tab. I, we report the reconstruction
performance measured on the entire test dataset for each
approach. We use the average Peak Signal to Noise Ratio
(PSNR) and Structural Similarity (SSIM) [42] scores for which
higher scores indicate better results.
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(a) SF (b) Groundtruth (c) Gatys [1] (d) Johnson [4] (e) MGAN [10] (f) pix2pix [11] (g) Ours

Fig. 5. Results of the state-of-the-art methods for face destylization. (a) Input portraits of Feathers, Scream from seen styles as well as la Muse , Udnie and
Mosaic from unseen styles (from test dataset; not available to the algorithm during training) (b) Ground-truth images of real faces.

TABLE I
COMPARISON OF PHYSICAL (PSNR) AND PERCEPTUAL (SSIM) QUALITY

MEASURES FOR THE ENTIRE TEST DATASET.

Method
Seen Styles Unseen Styles

PSNR SSIM PSNR SSIM

Gatys [1] 22.6792 0.8656 20.2320 0.8493

Johnson [4] 22.8481 0.8745 21.2184 0.8632

MGAN [10] 19.5254 0.8548 17.2645 0.8270

pix2pix [11] 22.9893 0.8871 21.6316 0.8860

Ours 23.2086 0.9087 22.4430 0.9015

We report performance of destylization algorithms for two
scenarios: seen and unseen styles. For the seen styles, results of
the state-of-the-art style transfer methods are shown in the first
and second rows of Fig. 5 and Fig. 6. For the destylization of
portraits of unseen styles, we demonstrate results in the third,
fourth and fifth rows of Fig. 5 and Fig. 6.

Tab. I shows that our results achieve better PSNR and SSIM
than the state-of-the-art methods on seen styles and unseen
styles. This performance also coincides with the visual results.
Consistency Analysis. Intuitively, the destylized faces from
the different styles of the same person should look similar. Ex-
amples generated from multiple styles are shown in Fig. 5(g)
and Fig. 6(g). In this experiment, we demonstrate that our
method not only recovers realistic faces with high fidelity but

TABLE II
COMPARISON OF CONSISTENCY BETWEEN DESTYLIZED FACES FROM

VARIOUS SEEN AND UNSEEN STYLES.

Seen Styles Unseen Styles

Gatys [1] 82% 83%

Johnson [4] 73% 72.5%

MGAN [10] 2% 1%

pix2pix [11] 93.33% 85.1%

Ours 98% 90.8%

also generates faces looking close to each other given multiple
styles of the same person on input. This indicates that SRN can
indeed extract facial features from portraits despite different
styles and transfer these features to recover underlying faces.

To evaluate the consistency of generated faces from different
portraits of the same person, we adapt the off-the-shelf deep
face recognition approach [43]. First, we randomly choose
100 RF and 800 corresponding SF faces from eight different
styles in the test dataset for our gallery (three seen styles and
five unseen styles). Then, we employ Gatys [1], Johnson [4],
MGAN [10], pix2pix [11] and our FDNN to recover real faces
from eight various stylized faces. For each method, we set
100 destylized faces from the Candy style as a query dataset
and set the other 700 destylized faces from the other seven
styles as a search dataset. Following the standard protocol, we
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(a) SF (b) Groundtruth (c) Gatys [1] (d) Johnson [4] (e) MGAN [10] (f) pix2pix [11] (g) Ours

Fig. 6. Result of the state-of-the-art methods for face destylization. (a) Input portraits of Candy and Scream from seen styles as well as la Muse, starry Night
and Mosaic from unseen styles (from test dataset; not available to the algorithm during training) (b) Ground-truth images of real faces.

Fig. 7. Results for the original paintings. Top row: the original portraits from
DevianArt. Bottom row: our destylization results.

compute the Face Recognition Rate (FRR) which quantifies if
the correct person is retrieved within the top-5 candidates (the
probability of successful retrieval by chance is 0.71%). We
also use the same procedure for other styles. Table II shows
the average FRR of each method for seen and unseen styles.
Our method yields high consistency score for both seen and
unseen styles. This indicates the effectiveness of our FDNN
in producing realistic faces of high-fidelity.

C. Performance on Original Paintings

Despite our method is trained on a synthetic dataset, it can
efficiently generalize to real paintings/portraits. To demostrate
this, we randomly choose some paintings with faces from
DevianArt. We crop images of these faces and then align them

(a) Unaligned (b) SF (c) Our result

(d) Upright pose (e) SF (f) Our result

Fig. 8. Failures. (a) An unaligned ground-truth face. (e) Stylized face of (a).
(c) Our result. (d) An upright pose. (e) Stylized face of (d). (c) Our result.

to the CelebA face dataset in an off-line pre-processing step.
Our method successfully reconstructs plausible facial details
from real paintings as shown in Fig. 7. This highlights that
our method is not restricted to synthesized stylized faces.

D. Limitations

Our proposed network requires that the eyes of stylized
faces to be aligned beforehand to a template. Without such
an alignment, FDNN may cause artifacts. However, we plan
to automatically align the stylized facial images in our future
work. As illustrated in Fig. 8(a), destylization is performed
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on an unaligned stylized face. As a consequence, our net-
work cannot localize facial features correctly and produces
erroneous feature maps. In addition, our method may produce
artifacts for portraits suffering from large pose variations, such
as profile views of faces etc. Since there are not enough images
of faces in side-view in the training dataset, this produces
artifacts. As shown in Fig. 8(f), the network fails to generate
satisfying results for an upright pose. Exploring how to address
large pose variations will be our future work.

VI. CONCLUSION

We presented a face destylization method that extracts fea-
tures of a stylized portrait and then exploits them to generate
its corresponding photo-realistic face. Our network learns a
mapping from stylized facial feature maps to realistic facial
feature maps. Our network can successfully extract facial
features from different styles and thus is able to destylize
unseen style portraits as well.
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